Factors, what factors?

A Whirlwind Tour of Exploratory Factor Analysis

Matthew Sigal

March 9th, 2018

A Cornerstone of Psychology...

Exploratory Factor Analysis

- Basis in psychometric research on intelligence and cognitive abilities
- Also used in personality, psychopathology, other areas
- Used to assess constructs that can't be directly measured:
 - e.g., intelligence, attitudes, personality traits, preferences
- Also can be used to test "factorial invariance" across groups

The Goal:

Develop a model which represents the pattern of associations among a potentially large number of empirically observed variables in terms of a small number of unobserved, or latent, variables (or "factors").

Driving force is: Parsimony!

How many different *underlying constructs* (common factors or latent variables) are needed to account for or explain the *correlations* among a set of observed variables?

EFA assumes that there exists a small number of factors within a given topic domain, which influence the observed variables to varying extents and is responsible for the correlations among them.

Holzinger and Swineford (1939)

- Mental ability test scores from 301 7th and 8th grade children
- 9 test scores 36 bivariate correlations

Table 1: Correlation Matrix

	×1	x2	x3	x4	x5	хб	x7	x8	×9	
x1	1	0.30	0.44	0.37	0.29	0.36	0.07	0.22	0.39	
x2	0.30	1	0.34	0.15	0.14	0.19	-0.08	0.09	0.21	
x3	0.44	0.34	1	0.16	0.08	0.20	0.07	0.19	0.33	
x4	0.37	0.15	0.16	1	0.73	0.70	0.17	0.11	0.21	
×5	0.29	0.14	0.08	0.73	1	0.72	0.10	0.14	0.23	
хб	0.36	0.19	0.20	0.70	0.72	1	0.12	0.15	0.21	
x7	0.07	-0.08	0.07	0.17	0.10	0.12	1	0.49	0.34	
x8	0.22	0.09	0.19	0.11	0.14	0.15	0.49	1	0.45	
×9	0.39	0.21	0.33	0.21	0.23	0.21	0.34	0.45	1	

FA is used to establish whether and to what extent certain observed, operational variables can be used to represent *hypothetical* latent variables or constructs. Can be used with:

- a battery of test scores (continuous data; using R); or,
- to model individual items within a test (categorical data; using polychoric correlations)

The Common Factor Model

Observed variables depend on two different types of latent variables:

- Common factors influence more than one observed variable and account for the correlations among all observed variables and a portion of the variance of each observed variable.
- Onique factors influence only one observed variable and represent the part of the observed variable not explained by common factors.
 - Specific systematic variation affecting a single observation
 - Error random variation

The Common Factor Model

$$Y_{pi} = \left(\sum_{m=1}^{M} \lambda_{pm} f_{mi}\right) + \epsilon_{pi}$$

Y_{pi} is the observed score on the pth observed variable for individual i
λ_{pm} is the factor loading of the pth observed variable on the mth factor
f_{mi} is a factor score on the mth common factor for individual i
ε_{pi} is the value on the pth unique factor for individual i.

This relates a given observed variable (P) to the set of common factors (M) and a unique factor (ϵ) .

The Common Factor Model

If
$$M = 1 \rightarrow Y_{pi} = \lambda_{p1} f_{1i} + \epsilon_{pi}$$

If
$$M = 2 \rightarrow Y_{pi} = \lambda_{p1} f_{1i} + \lambda_{p2} f_{2i} + \epsilon_{pi}$$

Factor Analysis as Multiple Regression

This is essentially a linear multiple regression model in which the given observed variable (Y) is the outcome and the common factors ($F_1 \dots F_M$) are the predictor variables!

So, factor loadings (the λ_{pm} s) are partial regression slope coefficients that give the strength of the relationship between the *m*th common factor and the *p*th observed variable.

Since this is just multivariate multiple regression, we can condense the previous expression using matrix notation:

 $\mathbf{Y} = \Lambda \mathbf{f} + \boldsymbol{\epsilon}$

- **Y** is the $P \times 1$ vector of observed variables
- Λ is a $P \times M$ factor loading matrix
- **f** is the $M \times 1$ vector of common factor scores
- ϵ is the $P \times 1$ vector of unique factors

... so, what's the problem?

Because the *M* common factors are latent... the individual factor scores (\mathbf{f}_{mi}) are unknown and indeterminate.

The goal of EFA is to estimate Λ in spite of this!

Behind the Scenes

Communality

- Akin to R^2 in multiple regression
- Can calculate h^2 for each observed variable (p)
- Is the proportion of that variable's variance explained by the model
- Is a ratio of the variance resulting from the common factors and from the unique factors:

$$h_p^2 = rac{1 - \mathrm{VAR}(\epsilon_p)}{\mathrm{VAR}(Y_p)}$$

Uniqueness

• The amount of variance not account for or explained by the factors:

$$u_p^2 = 1 - h_p^2$$

Estimation

The correlation structure for the *P* observed variables implied by the factor model is:

$$\hat{\mathbf{P}} = \Lambda \Psi \Lambda' + \Theta$$

• $\hat{\mathbf{P}}$ is the $P \times P$ model-implied correlation matrix for the population

- $\bullet\,$ If the model is correct in the population, \hat{P} will equal P
- Λ is the same $P \times M$ matrix of factor loadings
- Ψ is the M imes M matrix of correlations among the common factors
- Θ is a diagonal matrix with diagonal values equal to the uniqueness of the individual observed variables

Estimation

The correlation structure for the *P* observed variables implied by the factor model is:

$$\hat{\mathbf{P}} = \Lambda \Psi \Lambda' + \Theta$$

• $\hat{\mathbf{P}}$ is the $P \times P$ model-implied correlation matrix for the population

- $\bullet\,$ If the model is correct in the population, \hat{P} will equal P
- Λ is the same $P \times M$ matrix of factor loadings
- Ψ is the M imes M matrix of correlations among the common factors
- Θ is a diagonal matrix with diagonal values equal to the uniqueness of the individual observed variables

The factor scores themselves do not appear in this formulation!

This is the trick:

- We don't really care about factor scores, so we put them aside
- Want to find a set of parameter values for Λ , Ψ , and Θ that produces a model-implied correlation matrix, $\hat{\mathbf{P}}$ that matches our sample correlation matrix, \mathbf{R} , given that it is itself an estimate of the population correlation matrix \mathbf{P} .
- Don't actually need raw data values just the correlation matrix!

 \ldots Unfortunately, estimating $\hat{\textbf{P}}$ is pretty difficult.

This has led to many different "factor extraction" techniques (and many simulation studies):

- Principal axis extraction
- Unweighted least-squares estimation
- Generalized least-squares
- Maximum likelihood estimation

Begins with the researcher choosing M (the number of common factors) and an extraction method, which generates a starting value for the communality estimates (usually the squared multiple correlations).

Iteration...

- Estimate factor loadings (given communality estimates)
- Stimate the communalities (given the factor loadings)
- Repeat until communalities stop fluctuating

Maximum Likelihood fitting function:

$$F_{ML} = \log|\hat{\mathbf{P}}| + \operatorname{tr}(\mathbf{R}\hat{\mathbf{P}}^{-1}) - \log|\mathbf{R}| - P$$

Uses our guess at $\hat{\Lambda}$ and $\hat{\Theta}$ to minimize F_{ML} . This boils down to a comparison of **R** with $\hat{\mathbf{P}}$ and if $\hat{\mathbf{P}} = \mathbf{R}$, $F_{ML} = 0$.

- Communalities greater than 1 (Heywood case)
- Ø Non-convergence iteration fails to settle on a solution

Most often appear when there is:

- linear dependence among the observed variables;
- too many common factors; or,
- sample size is too small.

Often researchers will test M = 1, 2, 3... This choice should be based upon a variety of criteria.

- Most tests involve looking at the eigenvalues of the correlation matrix (which characterizes the amount of information contained in a factor relative to the overall covariation among the observed variables)
- Interpretational quality often regarded as most important criterion

Kaiser Criterion

- $\bullet\,$ Eigenvalues in ${\bf R}>1$
- Default in SPSS and SAS
- Not recommended

• Scree plots:

- $\bullet\,$ line chart of eigenvalues of R against their ranks in terms of magnitude
- Look for the "bend" where not much more information is gained

• Parallel analysis:

- Addition to scree plot, provides a less ambiguous guideline
- $\bullet\,$ Eigenvalues from R are compared vs random simulated data
- Limit M to when the original line does not give more information than random data

Visual Tests

Scree Plot and Parallel Analysis of H&S Dataset

Number of Factors

- Standardized Root-Mean-Square residual (SRMR)
- χ^2 test of exact-fit (almost always significant...)
- Root-mean-square error of approximation (RMSEA; smaller)
- Akaike Information Criterion (AIC; smaller)
- Bayesian Information Criterion (BIC; smaller)
- Tucker-Lewis Index (TLI; larger)

A good factor...

- Makes sense
- Will be easy to interpret
- Possesses "simple structure"
- Items have low cross-loadings

How are factor loading interpreted?

Rotation

When $M \ge 2$, there are an infinite number of factor loading matrices that could explain the relations \rightarrow **rotational indeterminacy**. Initial $\hat{\Lambda}$ estimates are almost always difficult to interpret and needs to be rotated to enhance conceptual understanding.

	ML1	ML2	ML3
×1	0.49	0.31	0.39
x2	0.24	0.17	0.40
x3	0.27	0.41	0.47
×4	0.83	-0.15	-0.03
×5	0.84	-0.21	-0.10
×б	0.82	-0.13	0.02
x7	0.23	0.48	-0.46
×8	0.27	0.62	-0.27
×9	0.38	0.56	0.02

The goal of rotation is to fit a geometric projection of the loadings where some are strong and others are near zero for each factor.

- The absolute distance between any two points stays the same.
- Rotation does not affect communality estimates or the predicted/residual correlation matrices.

$$\hat{\Lambda}_r = \hat{\Lambda} \mathbf{T}$$

Types of Rotation

Orthogonal

The transformation matrix **T** is a square, orthogonal matrix (TT' = I).

- Varimax is most popular (default in SPSS and SAS)
- Ensures that factors remain uncorrelated $(\hat{\Psi} = \mathbf{I})$
- Not encouraged!

Oblique

More realistic that factors are correlated to some extent. Oblique rotations define $(\hat{\Psi} = \mathbf{T}^{-1}\mathbf{T}'^{-1})$.

- Promax and oblimin rotations are most commonly used
- Oblimin weight can be modified to balance between row and column parsimony.

Types of Rotation

	ML1	ML2	ML3		ML1	ML3	ML2		ML1	ML2	ML3		ML1	ML3	ML2
×1	0.49	0.31	0.39	×1	0.28	0.62	0.15	×1	0.15	0.04	0.61	×1	0.19	0.60	0.03
x2	0.24	0.17	0.40	x2	0.10	0.49	-0.03	x2	0.01	-0.12	0.52	x2	0.04	0.51	-0.12
x3	0.27	0.41	0.47	x3	0.03	0.66	0.13	x3	-0.11	0.03	0.70	x3	-0.07	0.69	0.02
x4	0.83	-0.15	-0.03	x4	0.83	0.16	0.10	×4	0.84	0.00	0.01	x4	0.84	0.02	0.01
×5	0.84	-0.21	-0.10	×5	0.86	0.09	0.09	×5	0.90	0.01	-0.08	×5	0.89	-0.07	0.01
×б	0.82	-0.13	0.02	xб	0.80	0.21	0.09	×б	0.81	-0.01	0.07	×б	0.81	0.08	-0.01
x7	0.23	0.48	-0.46	x7	0.09	-0.07	0.70	x7	0.04	0.74	-0.21	x7	0.04	-0.15	0.72
x8	0.27	0.62	-0.27	x8	0.05	0.16	0.71	x8	-0.05	0.72	0.05	x8	-0.03	0.10	0.70
×9	0.38	0.56	0.02	×9	0.13	0.41	0.52	×9	0.01	0.48	0.34	×9	0.03	0.37	0.46
(a) None				(b) \	/arim	iax	(c) Promax					(d) Oblimin			

Table 2: Rotation and Factor Loadings

How are factor loadings interpreted?

Tableplots:

Where does this fit in?

Structural Equation Modelling

A general framework encompassing a wide variety of methods and models represented via path diagrams.

- EFA: I don't know what is going on
- CFA: Let's test what is going on
- Path Analysis: I think these things are related in a particular way but only the things I see are real
- Latent Variable Modelling: Fully generalizable framework that incorporates both latent and manifest variables

Where does this fit in?

Structural Equation Modelling

A general framework encompassing a wide variety of methods and models represented via path diagrams.

- EFA: I don't know what is going on
- CFA: Let's test what is going on
- Path Analysis: I think these things are related in a particular way but only the things I see are real
- Latent Variable Modelling: Fully generalizable framework that incorporates both latent and manifest variables

PCA is not on this list for a good reason!

- Principal Components Analysis only does data reduction
- Assumes that variables are measured without error

EFA is a process

- Solutions should replicate with new samples
- Over a series of studies:
 - Develop a good idea of how variables relate to underlying factors
 - Formulate specific hypotheses about the values of the coefficients
 - Can conduct CFA to test structure (constrain λ values to 0)