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A Cornerstone of Psychology. . .

Exploratory Factor Analysis
Basis in psychometric research on intelligence and cognitive abilities
Also used in personality, psychopathology, other areas
Used to assess constructs that can’t be directly measured:

e.g., intelligence, attitudes, personality traits, preferences

Also can be used to test “factorial invariance” across groups

The Goal:
Develop a model which represents the pattern of associations among a
potentially large number of empirically observed variables in terms of a
small number of unobserved, or latent, variables (or "factors").



Exploratory Factor Analysis

Driving force is: Parsimony!
How many different underlying constructs (common factors or

latent variables) are needed to account for or explain the
correlations among a set of observed variables?

EFA assumes that there exists a small number of factors within a given
topic domain, which influence the observed variables to varying extents and
is responsible for the correlations among them.



Holzinger and Swineford (1939)

Mental ability test scores from 301 7th and 8th grade children
9 test scores – 36 bivariate correlations

Table 1: Correlation Matrix

x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 1 0.30 0.44 0.37 0.29 0.36 0.07 0.22 0.39
x2 0.30 1 0.34 0.15 0.14 0.19 -0.08 0.09 0.21
x3 0.44 0.34 1 0.16 0.08 0.20 0.07 0.19 0.33
x4 0.37 0.15 0.16 1 0.73 0.70 0.17 0.11 0.21
x5 0.29 0.14 0.08 0.73 1 0.72 0.10 0.14 0.23
x6 0.36 0.19 0.20 0.70 0.72 1 0.12 0.15 0.21
x7 0.07 -0.08 0.07 0.17 0.10 0.12 1 0.49 0.34
x8 0.22 0.09 0.19 0.11 0.14 0.15 0.49 1 0.45
x9 0.39 0.21 0.33 0.21 0.23 0.21 0.34 0.45 1



Exploratory Factor Analysis

FA is used to establish whether and to what extent certain observed,
operational variables can be used to represent hypothetical latent variables
or constructs. Can be used with:

a battery of test scores (continuous data; using R); or,
to model individual items within a test (categorical data; using
polychoric correlations)



The Common Factor Model

Observed variables depend on two different types of latent variables:

1 Common factors influence more than one observed variable and
account for the correlations among all observed variables and a portion
of the variance of each observed variable.

2 Unique factors influence only one observed variable and represent the
part of the observed variable not explained by common factors.

Specific - systematic variation affecting a single observation
Error - random variation



The Common Factor Model

Ypi =
( M∑

m=1
λpmfmi

)
+ εpi

Ypi is the observed score on the pth observed variable for individual i
λpm is the factor loading of the pth observed variable on the mth factor
fmi is a factor score on the mth common factor for individual i
εpi is the value on the pth unique factor for individual i .

This relates a given observed variable (P) to the
set of common factors (M) and a unique factor (ε).



The Common Factor Model

If M = 1 → Ypi = λp1f1i + εpi

If M = 2 → Ypi = λp1f1i + λp2f2i + εpi

Factor Analysis as Multiple Regression
This is essentially a linear multiple regression model in which the given
observed variable (Y ) is the outcome and the common factors (F1 . . .FM)
are the predictor variables!

So, factor loadings (the λpms) are partial regression slope coefficients that
give the strength of the relationship between the mth common factor and
the pth observed variable.



In Matrix Form. . .

Since this is just multivariate multiple regression, we can condense the
previous expression using matrix notation:

Y = Λf + ε

Y is the P × 1 vector of observed variables
Λ is a P ×M factor loading matrix
f is the M × 1 vector of common factor scores
ε is the P × 1 vector of unique factors



. . . so, what’s the problem?

Because the M common factors are latent. . . the individual factor scores
(fmi) are unknown and indeterminate.

The goal of EFA is to estimate Λ in spite of this!
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Behind the Scenes

Communality
Akin to R2 in multiple regression
Can calculate h2 for each observed variable (p)
Is the proportion of that variable’s variance explained by the model
Is a ratio of the variance resulting from the common factors and from
the unique factors:

h2
p = 1−VAR(εp)

VAR(Yp)

Uniqueness
The amount of variance not account for or explained by the factors:

u2
p = 1− h2

p



Estimation

The correlation structure for the P observed
variables implied by the factor model is:

P̂ = ΛΨΛ′ + Θ

P̂ is the P × P model-implied correlation matrix for the population
If the model is correct in the population, P̂ will equal P

Λ is the same P ×M matrix of factor loadings
Ψ is the M ×M matrix of correlations among the common factors
Θ is a diagonal matrix with diagonal values equal to the uniqueness of
the individual observed variables

The factor scores themselves do not appear in this formulation!
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Correlational Structure

This is the trick:

We don’t really care about factor scores, so we put them aside
Want to find a set of parameter values for Λ, Ψ, and Θ that produces
a model-implied correlation matrix, P̂ that matches our sample
correlation matrix, R, given that it is itself an estimate of the
population correlation matrix P.
Don’t actually need raw data values – just the correlation matrix!



Estimation

. . . Unfortunately, estimating P̂ is pretty difficult.

This has led to many different “factor extraction” techniques (and many
simulation studies):

Principal axis extraction
Unweighted least-squares estimation
Generalized least-squares
Maximum likelihood estimation



Estimation

Begins with the researcher choosing M (the number of common factors)
and an extraction method, which generates a starting value for the
communality estimates (usually the squared multiple correlations).

Iteration...
1 Estimate factor loadings (given communality estimates)
2 Estimate the communalities (given the factor loadings)
3 Repeat until communalities stop fluctuating



Estimation

Maximum Likelihood fitting function:

FML = log|P̂|+ tr(RP̂−1)− log|R| − P

Uses our guess at Λ̂ and Θ̂ to minimize FML.
This boils down to a comparison of R with P̂ and

if P̂ = R, FML = 0.



Estimation Problems

1 Communalities greater than 1 (Heywood case)
2 Non-convergence - iteration fails to settle on a solution

Most often appear when there is:

linear dependence among the observed variables;
too many common factors; or,
sample size is too small.



But is it good?

Often researchers will test M = 1, 2, 3 . . . This choice should be based upon
a variety of criteria.

Most tests involve looking at the eigenvalues of the correlation matrix
(which characterizes the amount of information contained in a factor
relative to the overall covariation among the observed variables)
Interpretational quality often regarded as most important criterion



Kaiser Criterion

Eigenvalues in R > 1
Default in SPSS and SAS
Not recommended



Visual Tests

Scree plots:
line chart of eigenvalues of R against their ranks in terms of magnitude
Look for the “bend” where not much more information is gained

Parallel analysis:
Addition to scree plot, provides a less ambiguous guideline
Eigenvalues from R are compared vs random simulated data
Limit M to when the original line does not give more information than
random data



Visual Tests
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Statistical Tests and Fit Indices

Standardized Root-Mean-Square residual (SRMR)
χ2 test of exact-fit (almost always significant. . . )
Root-mean-square error of approximation (RMSEA; smaller)
Akaike Information Criterion (AIC; smaller)
Bayesian Information Criterion (BIC; smaller)
Tucker-Lewis Index (TLI; larger)



But is it good?

A good factor...
Makes sense
Will be easy to interpret
Possesses "simple structure"
Items have low cross-loadings



How are factor loading interpreted?

Rotation
When M ≥ 2, there are an infinite number of factor loading matrices that
could explain the relations → rotational indeterminacy.
Initial Λ̂ estimates are almost always difficult to interpret and needs to be
rotated to enhance conceptual understanding.

ML1 ML2 ML3
x1 0.49 0.31 0.39
x2 0.24 0.17 0.40
x3 0.27 0.41 0.47
x4 0.83 -0.15 -0.03
x5 0.84 -0.21 -0.10
x6 0.82 -0.13 0.02
x7 0.23 0.48 -0.46
x8 0.27 0.62 -0.27
x9 0.38 0.56 0.02



Rotation

The goal of rotation is to fit a geometric projection of the loadings where
some are strong and others are near zero for each factor.

The absolute distance between any two points stays the same.
Rotation does not affect communality estimates or the
predicted/residual correlation matrices.

Λ̂r = Λ̂T



Types of Rotation

Orthogonal
The transformation matrix T is a square, orthogonal matrix (TT′ = I).

Varimax is most popular (default in SPSS and SAS)
Ensures that factors remain uncorrelated (Ψ̂ = I)
Not encouraged!

Oblique
More realistic that factors are correlated to some extent. Oblique rotations
define (Ψ̂ = T−1T′−1).

Promax and oblimin rotations are most commonly used
Oblimin weight can be modified to balance between row and column
parsimony.



Types of Rotation

ML1 ML2 ML3
x1 0.49 0.31 0.39
x2 0.24 0.17 0.40
x3 0.27 0.41 0.47
x4 0.83 -0.15 -0.03
x5 0.84 -0.21 -0.10
x6 0.82 -0.13 0.02
x7 0.23 0.48 -0.46
x8 0.27 0.62 -0.27
x9 0.38 0.56 0.02

(a) None

ML1 ML3 ML2
x1 0.28 0.62 0.15
x2 0.10 0.49 -0.03
x3 0.03 0.66 0.13
x4 0.83 0.16 0.10
x5 0.86 0.09 0.09
x6 0.80 0.21 0.09
x7 0.09 -0.07 0.70
x8 0.05 0.16 0.71
x9 0.13 0.41 0.52

(b) Varimax

ML1 ML2 ML3
x1 0.15 0.04 0.61
x2 0.01 -0.12 0.52
x3 -0.11 0.03 0.70
x4 0.84 0.00 0.01
x5 0.90 0.01 -0.08
x6 0.81 -0.01 0.07
x7 0.04 0.74 -0.21
x8 -0.05 0.72 0.05
x9 0.01 0.48 0.34

(c) Promax

ML1 ML3 ML2
x1 0.19 0.60 0.03
x2 0.04 0.51 -0.12
x3 -0.07 0.69 0.02
x4 0.84 0.02 0.01
x5 0.89 -0.07 0.01
x6 0.81 0.08 -0.01
x7 0.04 -0.15 0.72
x8 -0.03 0.10 0.70
x9 0.03 0.37 0.46

(d) Oblimin

Table 2: Rotation and Factor Loadings



How are factor loadings interpreted?

Tableplots:
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Where does this fit in?

Structural Equation Modelling
A general framework encompassing a wide variety of methods and models
represented via path diagrams.

EFA: I don’t know what is going on
CFA: Let’s test what is going on
Path Analysis: I think these things are related in a particular way but
only the things I see are real
Latent Variable Modelling: Fully generalizable framework that
incorporates both latent and manifest variables

PCA is not on this list for a good reason!
Principal Components Analysis only does data reduction
Assumes that variables are measured without error
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Finally. . .

EFA is a process
Solutions should replicate with new samples
Over a series of studies:

Develop a good idea of how variables relate to underlying factors
Formulate specific hypotheses about the values of the coefficients
Can conduct CFA to test structure (constrain λ values to 0)


